

GC5355

高精度电感式接近开关电路

产品规格书

鑫雁微电子保留产品及其规格书的更改权,以便为客户提供更优秀的产品,规格书若有更改,恕不另行通知。在购买本规 格书所记载的产品时,请预先向鑫雁微电子的销售部门确认最新信息。

鑫雁微电子一直致力于提高产品的质量和可靠性,然而,任何半导体产品在特定条件下都有一定的失效或发生故障的可能, 客户有责任在使用鑫雁微电子产品进行产品研发时,严格按照对应规格书的要求使用产品,并在进行系统设计和整机制造时遵 守安全标准并采取安全措施,以避免潜在失败风险、造成人身伤害或财产损失等情况。如果是因为客户不正确使用鑫雁微电子 产品而造成的人身伤害、财产损失等情况、鑫雁微电子不承担任何责任。

本产品主要应用于消费类和工业类电子产品中,如果客户将本产品应用于化学、医疗、军事、航天等要求极高质量、极高 可靠性的领域的产品中,其潜在失败风险所造成的人身伤害、财产损失等情况,鑫雁微电子不承担任何责任。

本规格书所包含的信息仅作为本产品的应用指南,没有任何专利和知识产权的许可暗示,如果客户侵犯了第三方的专利和 知识产权,鑫雁微电子不承担任何责任。

上海鑫雁微电子股份有限公司在中国发布,版权所有。上海鑫雁微电子股份有限公司的公司名称、徽标均为上海鑫雁微电 子股份有限公司在中国的商标或注册商标。

网址: http://www.golden-chip.com/ E-mail: sales@golden-chip.com.cn

营销服务中心:上海市闵行区中春路8923号欧莱雅商务中心B座301-302室

电话: +86-21-34140399 传真: +86-21-64515171

产品与技术支持: 杭州市西湖区西斗门路毛家桥路北现代创智中心B座202室

电话: +86-571-88820269 传真: +86-571-88820239

◆ 产品描述

GC5355是针对电感式接近开关应用而开发的 专用集成电路, 可广泛应用于各种接近传感器或接 近控制系统中, 也可用来制作多种感应式检测仪 表,如感应式转速表等。

GC5355由振荡器、开关电路和放大输出电路 组成, 其基本工作原理是利用外接的电感电容构 成LC高频谐振电路,并在谐振环路中产生一个交 变磁场。当被检测的金属目标接近这一磁场并达 到感应距离时,在被检测的金属目标内产生涡流 并吸取振荡器的能量, 使得振荡器振幅衰减或停 振。振荡器振荡及停振的变化被后级放大电路处 理并转换成开关信号,触发驱动控制器件,从而 实现了非接触式检测的目的。

GC5355 具有集成度高、工作电压宽、输出电 流大、控制距离可调、外围电路少、应用方便、工 作稳定可靠等特点。和一般分立元器件组成的电 感式接近开关方案相比, GC5355 集成芯片方案的 一致性、稳定性更好,因此特别适用于高要求高可

靠性的场合。

GC5355 采用 SOP-8 (DFN-8L DFN-14L) 封装形式。

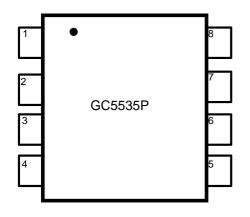
◆ 产品特点

- 静态电流低至 0.7mA
- 4~40V 宽工作电压
- 低饱和压降
- 内置温度补偿
- 灵敏度高,对电感要求低
- 回差与温度、电压及距离不相关
- 输出管开关频率高
- 输出管驱动电流达到 70mA 以上
- 工作温度范围-25~+85℃

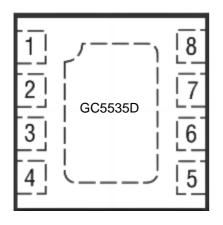
典型应用

- 电感式接近开关
- 无触点开关
- 位置控制
- 隔离检测
- 转速测量

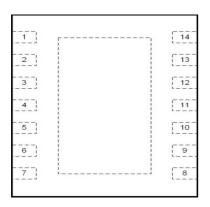
图 1. 外形图


订购信息

产品型号	封装形式	包装方法	状态
GC5355P	SOP8	编带,4000颗/盘	批量生产
GC5355D	DFN-8L	编带,5000颗/盘	批量生产
GC5355D 14	DFN-14L	编带,5000颗/盘	批量生产


管脚定义

SOP-8


管脚序号	管脚名称	功能描述
1	GND	地
2	R _{Di}	距离设置电阻
3	Cı	积分电容
4	Q2	输出 2
5	Q1	输出 1
6	V _{CC}	电源电压
7	LC	振荡器
8	R _{HY}	回差设置电阻

DFN-8L

管脚序号	管脚名称	功能描述
1	R _{Di}	距离设置电阻
2	R _{HY}	回差设置电阻
3	Cı	积分电容
4	GND	地
5	Q3	输出 3
6	Q1	输出 1
7	V _{CC}	电源电压
8	LC	振荡器

14-Pin 0.40 mm pitch DFN

管脚序号	管脚名称	功能描述		
1	R_{Di}	距离设置电阻		
2	N.C			
3	R _{HY}	回差设置电阻		
4	N.C			
5	Cı	积分电容		
6	N.C			
7	GND	地		
8	Q2	输出 2		
9	N.C			
10	Q1	输出 1		
11	N.C			
12	V _{CC}	电源电压		
13	N.C			
14	LC	振荡器		

功能框图

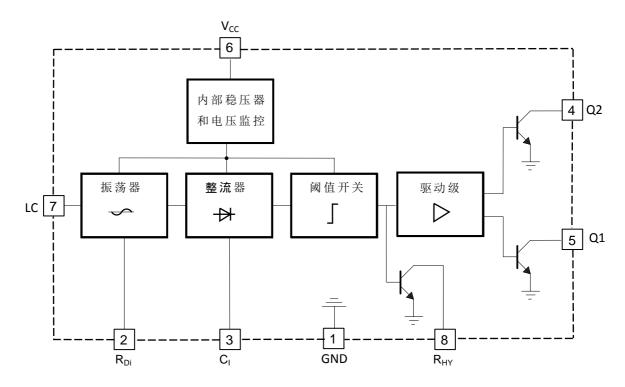


图 2. 内部结构框图(以SOP8为例)

▶ 极限参数

参数	符号	量值	单 位
电源电压	Vcc	-0.3 ~ +50	V
输出电压	V _{OUT(OFF)}	-1 ~ +45	V
输出低电平电流	lout(sink)	70	mA
R _{Di} 脚电流	-I _{RDi}	2	mA
R _{HYS} 脚电流	I _{RHYS}	2	mA
最大结温	Tj(max)	+150	$^{\circ}$
贮存温度	Тѕт	-55 ~ +160	$^{\circ}$

◆ 推荐工作条件

参 数	符号	量值	单 位
电源电压	Vcc	4.0 ~ 40	V
工作温度范围	Тор	-25 ~ +85	${\mathbb C}$

◆ 特性参数

工作特性指的是在整个工作电压和工作温度范围内,除非另有说明。典型值的测试条件:Vcc=12V和TA=25℃

特性	名 称	测试条件	最小值	典型值	最大值	单 位
最小启动电压	V_{TON}	输出开始动作		3.64	4	V
关断电压	V_{TOFF}	输出从动作到不动作	3.0	3.6	-	V
迟滞回差	ΔV_{HY}			0.04		V
静态电流	I _{CC}			0.55	0.70	mA
振荡频率	fosc				3	MHz
振荡幅值	Aosc			0.8		V_{PP}
CI 脚阈值	Vcı			2		V
CI 脚回差	V _{HYCI}			0.8		V
CI 脚灌电流	I _{CI}			7	-	μΑ
CI 脚拉电流	-I _{CI}			6	ï	μΑ
开关频率	fs	C _I <50pF,L=70μH		5	-	kHz
开关管导通压降	V_{QR}	I _Q =5mA		0.10	0.14	V
开关管导通压降	V_{QR}	I _Q =70mA		0.50	0.99	V

▶ 工作原理

LC 振荡器产生一个交变磁场。当金属目标接近这一磁场,并达到感应距离时,在金属目标内产生涡 流,从而导致振荡衰减,以至停振。振荡器振荡及停振的变化被后级放大电路处理并转换成开关信号,触 发驱动控制器件,从而达到非接触检测的目的。GC5355工作只需外部并联的电感线圈L和谐振电容C,即 可产生振荡,并产生交变磁场。其他外围元件如图3所示,两个电阻R_{Di}和R_{HY},分别用于设置感应距离和回 差。另外还需要积分电容C₁连接到3 脚,用于内部信号采样。

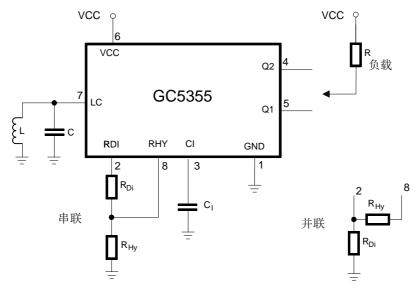


图 3. 工作原理(以SOP8封装为例)

典型应用电路

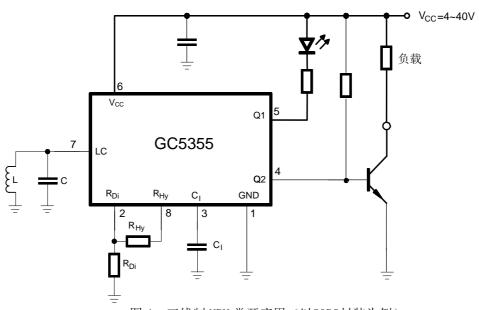
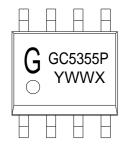
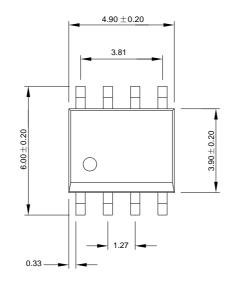
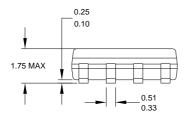
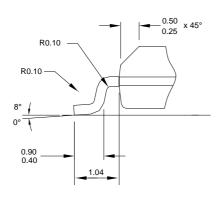



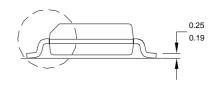
图 4. 三线制 NPN 常开应用(以SOP8封装为例)

> 打标信息

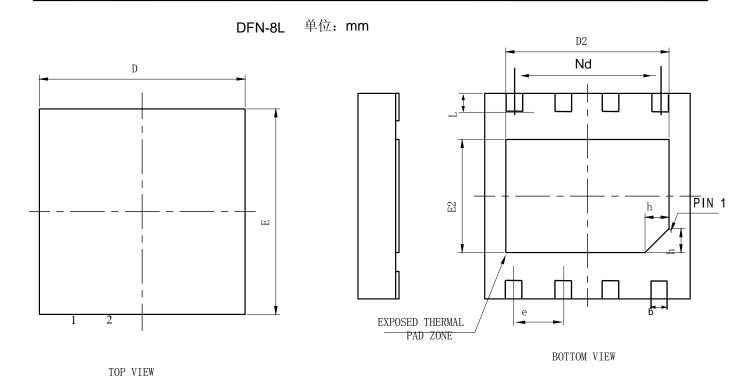

G: GoChip 标识。 GC5355: 芯片名称。

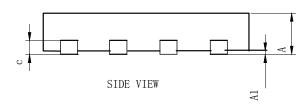

Y: 年。 ww: 周。 X: 内部代码。

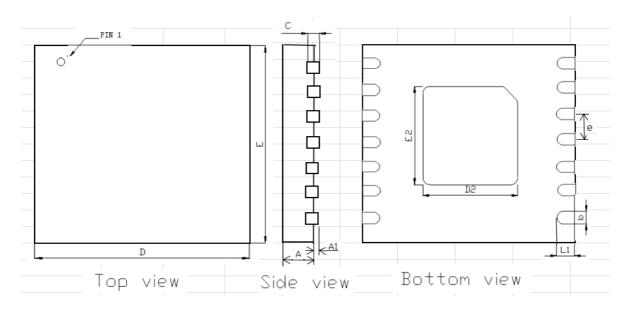

封装信息


SOP8

单位: mm







COMMON DIMENSIONS

SYMBOL	MILLIMETER				
STWIBOL	MIN 0	MI D	MAX		
A	. 70	0.75	0.80		
A1		0.02	0.05		
b	0. 20	0.25	0.30		
С	0. 18	0.20	0. 25		
D	2. 90	3.00	3. 10		
D 2	2. 20 2. 30		2.40		
e		0. 65 BSC	3		
Е	2.90 3.00		3. 10		
E2	1.40	1.50	1.60		
L	0. 20	0.25	0.30		
h	0.30	0. 35	0. 40		

单位: mm DFN-14L

Symbol	Millimeters			Inches		
	Min	Nom	Max	Min	Nom	Max
Α	0.70	0.75	0.80	0.028	0.030	0.031
A1		<0.05			<0.002	
b	0.21	0.23	0.25	0.008	0.009	0.010
С	0.20			0.008		
D	2,90	3.00	3.10	0.116	0.120	0.124
D2	1.55	1.60	1.65	0.062	0.064	0.066
E	2.90	3.00	3.10	0.116	0.120	0.124
E2	1.55	1.60	1.65	0.062	0.064	0.066
е	0.40 BSC				0.016	
L1	0.25	0.30	0.35	0.010	0.012	0.014